405HP 280Z

A somewhat local place had a surprise dyno day so I went to try and tune my car a bit. Was somewhat successful, reaching 405 HP and 420 Ft-lbs. before giving up. I was hoping for 450 HP, as my turbo and injectors should be able to support it easily, but oh well. I couldn’t get past ~14psi or so.

But I kept experiencing some spark blow-out and had a rear main leak, so I decided to cut it short.

October Autocross

Got a new oxygen sensor installed, tuned it a bit, and went to an autocross in my 280Z a couple weeks ago. I was third in my class! Out of three, though. So last. Still, the real victory is that my car made it there, ran, started and restarted fine, and then made it back home.

I also got to try my slicks out for the first time, and man, they make the car much more predictable. Lift-off oversteer is still there but manageable and much more forgiving (which probably doesn’t help that I have a bad habit of inducing it). Traction is not as greatly improved as I thought it would be, but I was just running them on the rear.

Anyway, here are a couple runs. A fun run (no time, just learning the course), and my fastest run.

 

280Z Update

It’s been a while since I’ve worked on my Z. I’ve been working on rebuilding my wife’s 300ZX, which is progressing slowly. My Z had a dead oxygen sensor and was not tuned correctly. It also had a fuel leak. But last week I fixed both of those issues and now it runs like a champ.

I then leaned out the fuel table by about 25% (I had richened it up when the sensor died to be safe). I was able to use autotune to then fix up the fuel map quite a bit. I really think it’s time to get it tuned on a dyno, but haven’t committed yet.

Sent off my oil temperature gauge to get the range changed from 100-300 degrees F or so to 60-260.

I’d like to use the slicks I got in at least one race this season, but I need to remove my bump steer spacers for the 15″ wheels they are on to fit.

3rd pump’s the charm

So I picked up a Bosch 044 fuel pump for a song, and decided to get rid of my Fuelab Prodigy pump. I almost wrote about the Fuelab install, but since I intended on replacing it, it wasn’t worth it. It was just too much for my vehicle, even at my target boost levels.

The Fuelab pump was brushless, and so was very picky about voltage. It was unusable during cranking due to a large voltage drop because of my small battery. So I had to add in a check valve, which helped, but I still needed to do a ten-fold increase in my cranking pulsewidth calculations. Then there was the speed control wiring. It was too much ‘because racecar’, so I decided to swap to the Bosch when offered.

To my surprise it came with a check valve integrated in to a type of banjo fitting. But, since I already added a check valve closer to the fuel rail, this would be redundant. Also, banjo fittings flow poorly.

A couple of new fittings and moving the mounting brackets over a bit was all it took to get it installed. Note all the holes for all the difference bracket configurations on my mounting plate. Heh.

On Properly Setting Your Cooling Fan Temperature Threshold

When I first installed an aftermarket ECU (Megasquirt I) in my 1984 300ZX, years ago (almost 10 as of this writing!), I used the recommended GM sensor for coolant temperature. It required a bit of machining to fit the sensor, nothing major.

With my latest engine (and the two cars it was in), I decided to use the OEM Cylinder Head Temperature Sensor, since hey, why not? It was already there, in an optimal spot. All I had to do was make software changes to calibrate MS-II to it’s temperature/resistance curve. I had the data in the Factory Service Manual, all was well. Continue reading

First autocross with a VG33

Well, with less than a couple hundred miles on the rebuilt engine, it was time to really break-in the new VG33. I took it to an autocross. Things were going well until I shut it off after my second run. It didn’t want to restart after that. It appears that the culprit was low battery voltage, as the ECU was resetting and the fuel pump never even came on during cranking. Even with a jump cranking speed just wasn’t very fast.

I did get three runs in, albeit only one of was clean. The first one was red flagged due to someone else spinning out, and the last one I spun out. Here are videos of the clean run and the second run where I spin:

 

280Z LED Conversion Part 2

Continuing from part 1, this is the start of installation and results of the LED conversion. I ordered a small bunch of LEDs to get a feel for what brightness I’m looking at since the website I ordered from has somewhat confusing ‘relative intensity’, ‘brightness’, and ‘lumens’ listed for each bulb. Not to mention the prices seemed to fluctuate independently of any of those values so it wasn’t as simple as ‘find the most expensive ones’.

For the first part of the conversion I ordered just 6 bulbs. The Type 97 and Type 89 replacements for the front and rear side markers and the two license plate lamps, respectively. They all use a BA15S base (1156), but the bulb is much smaller. I went with 15 LED license plate bulbs since the bulbs don’t face outward. In retrospect the 15 LED bulbs would have been nice for the side markers as well, but the 9 LED ones I got are at least as bright as the incandescents, probably a tad brighter.

9 LED vs stock Type 97:

 

Incandescent (left) and 15 LED bulb (right)

 

Before:

After:

If I had to do it over again I’d get the 15 LED bulbs for all the clearance lights instead of the 9 LED as they are a bit brighter and have better coverage. But they are still brighter, in my unscientific opinion, than the stock filaments.

Satisfied, I ordered some more bulbs:

The contents being:

  • 2 67-R15 Red (rear tail lights)
  • 2 1157-A45-T 1157 Amber (front combination lamps)
  • 2 1157-R45-T 1157 Red (rear combination brake/tail lights)
  • 2 1156-R45-T 1156 Red (rear turn signals)
  • 2 CF13JL-02 (3 Pin Zero-Load “Japanese” Flasher)

The brake and tail lights are slightly brighter, but come on much faster. The 67-R15s could be replaced with something even more bright but it’s not a big deal. I took a few photos before and after but it’s really hard to tell. However, here is one side-by-side comparison shot:

The left side is the stock tail light bulbs and the right is the new LEDs (67 and 1157).

Once you replace the turn signals the stock flashers will give up due to lack of current. This is fixed by replacing the stock flashers with these “zero-load” flashers. The stock ones depend on enough current to heat up an element and warp it, at which point it triggers by bending and hitting the contacts. This is why if bulbs are out the flash rate is different, or it stops flashing all together. Anyway, these “digital” flashers just happen to fit perfectly with the stock harness. All that’s needed is an extra ground.

The stock turn signal flasher is attached to the steering column, near the pedal mounts:

The hazard flashers is above the ECU and ignition relay:

Wiring both of them up is easy as the B and L terminals match up fine with the stock female plugs.

The wires (on a 1977 CA 280Z) match up as follows:

  • Turn signal flasher
    • W -> ‘L’ (Load, not blue like in the FSM)
    • G/Y -> ‘B’
    • E is the new earth/ground you’ll have to run.
  • Hazard flasher
    • G -> ‘L’
    • R/W -> ‘B’
    • E is the new earth/ground you’ll have to run.

Unfortunately there weren’t mounting tabs on them, but a couple zip ties and it’s good.

And that’s it. I measured the actual amperage before and after (just for the parking and tails), and it went from 1.5 A to 0.5A (33%), with 0.5 A of the dropped attributed to the tail lights alone. Not as a big as I thought but anything to reduce the load on the stock combination switch is good. That’s 20W down to about 7W. My initial calculations relied on the listed wattage for the bulbs, which I’m guessing is based on the maximum current draw which would be when the bulbs are first turned on. That’s down over 90%, which translates into my alternator not pulling down the idle when I first switch the lights on.

280Z LED Conversion Part 1

My 280Z isn’t what you could call “modern” in the electrical department. Originally, it came with an externally regulated alternator, fusible links, incandescent bulbs, and very few relays. The design inhereted a few things from Lucas eletronics, which is not a good thing. Regardless, it was fairly normal for the time. I’m glad there are no vacuum operated things, like some makes. The most electrically obtuse part of the design is the lack of relays. So, all the current for the headlights, parking lights, turn signals, and brakes goes through the individual switches for each. So, not only is there a significant voltage drop by the time the bulbs actually see any current, the switches are very prone to corrosion and failure. Sourcing a replacement column switch is getting harder and harder.

Solutions to this problem? Add in new relays for the lights to significantly reduce the load on the switches, and/or add LED lights to reduce the current draw of the lighting system altogether.

I’m opting to do the latter for now. The power savings are calculated as:

1977 280Z

  • 2 50W/40W headlights
  • 4 Type 97 (1156) 8W bulb side markers (2 amber, 2 red)
  • 2 Type 89 7.5W license plate bulbs
  • 2 Type 1157 23W/8W Stop/Tail lights
  • 2 Type 1157 23W/8W Front Park/Turn signal lights
  • 2 Type 67 8W Rear tail lights
  • 2 Type 1156 23W Rear turn signal lights
  • 2 Type 1156 23W Reverse lights

Incandescent bulbs:

  • 1156 – 23W * 4 = 92W
  • 1157 – 31W * 4 = 124W
  • 67 – 8W * 2 = 16W
  • 89 – 7.5W * 2 = 15W
  • 97 – 8W * 4 = 32W

279W total (not including headlamps). Granted, that’s with the brake lights depressed, in reverse, with the lights and hazards on. A more typical wattage would be 95W.

LED Bulbs

Sidemarkers:

  • 97 (9 LED 67-x9 Amber) – 0.5W * 2 = 1W
  • 97 (9 LED 67-x9 Red) – 0.5W * 2 = 1W
  • 89 (15 LED 67-x15 Red) – 0.5W * 2 = 1W
  • 1156 (45 LED 1156-x45-T Red) 0.14W * 4 = 0.56W
  • 1156 (45 LED 1156-x45-T Amber) 0.16W * 2 = 0.32W
  • 1156 (45 LED 1156-x45-T White) 0.16W * 2 = 0.32W
  • 1157 (45 LED 1157-x45-T Red) 0.165W * 2 = 0.33W
  • 1157 (45 LED 1157-x45-T Amber) 0.195W * 2 = 0.39W

4.92 Watts, and that’s at full load. That’s two orders of magnitude less. Again, that’s with everything on at once. A realistic value is 4.16W. Not a big difference than all of them on, mostly due to the clearance and license plate LEDs taking most of the power in the first place. So, all the parking and operating lamps on the car illuminated for about half the power of a single incandescent clearance lamp. That’s a huge improvement:

4.92 W / 279W = 1.76% of the power with everything on, 4% with just the parking lights.

The catch? LEDs are expensive. Most of the cost is with the 1156 and 1157 replacements, at $20-30 per bulb. Also, digital flasher units are required rather than the heated element type in use (this also has a significant power drop, not calculated here). The total comes out to around $250. Ouch. Cheaper LEDs can be had, but they will not be as bright, and won’t last as long as quality units.

Continued here.

3.3L 280Z Runs

So, am I the first? The first to put a VG33 in an S30? I have doubts but I’ve never heard of it before. After a bit of late night work and an unplanned oil event and a small unplanned fuel dump after removing and replacing the engine to fix the oil leak, it’s back in, running, and more importantly: not leaking.

Here’s a late night in-progress shot:

 

All the work was worth it, I had to get it running for a scheduled photoshoot: